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The dynamics of a simplest model of a wheeled vehicle in its region of sta- 
bility under a constant action of small perturbations of determinate as well as 

of random character is considered. Investigation of the track stability of the 

wheeled vehicles is usually reduced to determining the ranges of values of the 

parameters over which the motion of the system is stable, and to studying the 

character of the transition process in the region of stability. Of practical ir+ 

terest is the study of the dynamics of the system within the region of stability 
under the influence of small constantly acting perturbations of determinate as 

well as of random character (unevenness in the microprofile of a road and wind 

loads ). Such an investigation enables us to estimate the spread of the co- 

ordinates relative to the values of the parameters lying within the region of 

stability and to solve the problems of opimizing these parameters. 

1. Statement of the problem, To simplify the operations, we shall con- 
sider the case of an uncontrolled motion of a simple model of a wheeled vehicle in the 

horizontal plane. The equations of motion constructed with help of the Rocard drift 
hypothesis [l], have the form 

. 
Xl = - Ax, - Ax, - Bx3 + El + E, (1.1) 

X2 ‘=r 
. 

53 = " Bxl - Bx2--Cx3 - dIEI - d& 

Here we use the following dimensionless variables and notation: 

We assume that the unperturbed motion of the vehicle takes place on the xy -plane 
along the y -axis, 8 is the angle between the longitudinal axis of the vehicle and 

the y -axis, t is time, v is the velocity of motion along the Y -axis, m is the 
mass of the vehicle, p is the radius of inertia of the vehicle relative to the vertical 
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axis passing through the center of mass, oi and n are the drift coefficients of the 
front and rear wheels, 2, and 1, are the distances between the center of mass and 
the front and rear axle, L = 1, + 12 is the wheelbase of the vehicle, and 

F, and 8s are given perturbations acting of the front and rear wheels. 

In the dimensionless variables the set of steady motions becomes a set of equilibrium 
states, at each point of which the relation xi + 2s = 0 holds. 

The characteristic polynomial has the form 

P [p2 + p (-4 + C) + AC + B - B21 = PA (p) 

where k denotes a dimensionless differentiation operator. Neglecting the null root 
arising as the resultof the one-,dimensional character of the set [l], we find the condi- 

tions of stability of this set 

A+C>O, AC+B-B2>0 

In accordance with the physical sense of the parameters of the system, the first condi- 
tion always holds, and the second condition can be reduced to the following inequality: 

v2 < 
nrnsL2 

m (~14 - a2l2) 
(1.2) 

which in fact defines the range of the values of the parameters of the stable system’s 
motion. 

Let us now inspect the behavior of the system within the region of stability. Apply- 

ing Laplace transformation to Eqs. (1. l), we obtain 

Xk (P) = Ml (P) + bc2E2 (PJ (k = 1.2). xs (P> = PX2 (P) 

h =P2+P(C+Bq+w-~~i 
9 hai = - 

B+d*(p+ ‘4 
li Pn(P) PA (P) 

(i = 1,2) 

The transfer functions obtained for XI and X3 contain a zero root in the deno- 

minator. From this it follows that when a unit step impulse Er = 1 (T) acts on the 
system under the condition that Es = k& , the solution has the following structure: 

-&,2w = +- 
B+Ad,+k(B+Adz) 

AC+ B-B2 + 2 Ai(l,2) exp (pi z) 
i=l 

From this we see that in the region of stability of the system, the representative point 
approaches asymptotically a position different from the initial position when z--t 00 

The expressions obtained imply also that when the relation a2 = k% connecting 
the drift coefficients of the front and rear wheels holds, then stabilization of the vehicle 
moving on course under the action of sidewise perturbations becomes feasible. In the 

case when the sidewise perturbations are due to wind loads, the coefficient k becomes 

a constant determined by a vehicle profile. 
Let us now investigate the solution of the system under random perturbations, and let 

the probabiUtic characteristics of the perturbations El(%) and Es (‘t.) be given. We de- 

termine the dispersions of the coordinates z., i = I, 2, 3. We know from the 
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theory of random processes [2] that the dispersion D, of the coordinate ,z of the 
system can be expressed, in the presence of two random influences, by an expression 

of the form 

D.&=F,$, 1 wi (iw) w, (- i@) SF& (0) ok) 
i=i f=i --QD 

where Seiq (co) (i, r = 1, 2) are given spectral densities and reciprocal spectral 
densities of the processes Ei (7) and Es (T) , while IV1 (jo) and Ws (jw) are the 
transfer functions operating from kz and Es to the coordinate x , respectively. 

The presence of zero roots in the characteristic polynomial, and consequently in the 

denominators of the transfer functions, makes their use impossible as the dispersions 

9 

k 

turn out to be divergent. Consequently the problem has 
been incorrectly formulated. It can however become cor- 

or rect if we pass to the coordinates expressing the deviation 

P x7 
of the representative point from the surface of equilib- 
rium states. 

“2 Let 5i = u1 - U, xa = V, + u, and xs = vs 

.Y where u is the coordinate counted along the set 01, 
while v1 and ‘Vi. are coordinates orthogonal to u (see 

Fig. 1 Fig. 1). Equations (1.1) in these variables become 

Ul’ = - Au1 + 
I -B 
~-%+51+5a 61,a = (1.3) 

Q’ s - 2Bq - cvz - 2451 - 2d& 

1+B u’ = Au, + 2 vz - cl- 52 

We see that the first two equations of (1.3) form a closed system and can be considered 
separately. The third equation determines the motion of the representative point a- 
long the set, Applying the Laplace transformation, we obtain 

Vi(P) =$+$1(p)+ $$+(p) (i=1,2) 

PU (P) = g+(P) + >$ka(P) 

(1.4) 

Ali = P + C + dj (B - I), Asj = - 2 (djp + djA + B) 

Auj = P [A - (B + 1) d,,l + AC - 2Adj - B (B + 1) - I 
(i = 1, 2) 

Thus the change of the coordinates (u, vl, vs) produced the solution (1.4) in the 
variables V, and vs in which the zero root no longer appears. In addition, the 

variable u can be determined by quadrature. 
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Let random forces with mathematical expectations (51) and (5s) act upon 
the system, Then the mathematical expectations of the coordinates can be found from 

the equations of motion 

(Vl) = 
C ((51, + <&a>) - (1 -B) (4 (51) + dz G)) 

AC+B(i-B) 

(vd = - 
A (4 CL) + dz &a)) + 2B ((51) + (52)) 

AC+B(i-B) 

Subtracting from (1.3) the corresponding averaged equations, we obtain the equations 
of motion in centralized coordinates. These equations fully coincide with (1.3), pro- 
vided that the coordinates in the latter equations are regarded as centralized. We shall 
therefore assume from now on, that 8r and vs are centralized. 

2, Dynamic8 of a wheeled vehicle under a random wind load, 
We shall assrrme for simplicity that the side force acting on the rear wheel is proport- 

ional to the force acting on the front wheel, i.e. , %a = k%,. The physical realiza- 
tion of this assumption can be accomplished by a side wind when the load distribution 

on the front and rear wheels is determined by treating the vehicle as a sail of a certain 

area. 

Let the function E, (‘c) be defined by its mathematical expectation (t,) = 

p (F,) / 2mv2 and the spectral density [3] 

R@) B 
SE 09 = 2n (p2 + 82) 

The parameters RE (0) and 
meters RF (0) and pi 

j3 are connected with the corresponding wind pra- 
in the real time scale by the relations 

RE (0) = RF (0) p2 / (4mafi), fJ = PI& / v 

In this case the dispersion of the coordinate V, is given by the expression 

Substituting the expression for sE (0) in the above equation, we obtain 

D = Rg(O)B OJ s I A,, (~1 I2 
Cl 2n _JA(~~(P+~.W (@a@ 

At, (p) = (I + k) (P + Cd, G = C + (B -P;‘1(&-)““2) , p = jo 

As we know [Z], the above integral is equal to (-l)n+‘M, /2A, where A,, 
is the leading Hurwitz determinant of the polynomial 
in the denominator of the integrand function and &.f, 

A (pi (p + @) appearing 
represents the determinant A* 

in which the first column hasheen replaced by the coefficients of the polynomial 
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At,, (P) . To determine the dispersion of the coordinates, it is expedient to use 
the following theorem which can be proved by mathematical induction. 

Theorem. When the characteristic polynomial can be written in the form 

P,(~) = pn + ~n-~p”-l + . . . +a, = (P + B) Qn1-11 (P) 
(2.1) 

(Qn-1 (PI = f-l + b-2 P"-~ + . . . +&J 

the leading Hurwitz determinants A,,F and A$‘_~ are connected by the relation 

AnP = PA%lQn-I (PI 

We note that the polynomial P,(P) as written 
in the form (2.1) is encountered fairly often in 

the statistical dynamics. This stems from the 

fact that, as a rule, Q,_r (p) represents a 

characteristic polynomial of the system and the 

factor (p + 0)-l appears in the expression for 
spectral density of the perturbing influence. 

In the present case we have 

Qn-1 (PI = p2 +P (A + C) + 
AC + B - B2, 

Fig. 2 

and from this follows 

Az_1 = (A + C) (AC +B - B2) 

He (0) (1 + kP6 (F + HC12) (2.2) 

D,, = 2~(H-~B)[82+B(~+C)+~c+~--21 

F = fJ [AC + B - B21, H = A + C + b 

When the conditions of stability hold, the dispersion is positive. Considering the 
expression (2.2) as a function of various parameters we can determine the values of the 
parameters for which this function attains its minimum value, If we take the coef- 

ficient k as such a parameter, then the dispersion D =, reaches its minimum 

when k = k* where 

ke _ -(B - 1)2dId2H - HC (B - 1) (d2 + dI) - (F + HCs) - 
b f H [C + (B - 1) d2]2 

Similarly 

&, = 
f+(O) (4 + kd2128 (F + HC22) 

~(H--8)162+B(A+C)+AC+B--21 

has a minimum when k = k** where 
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k** = l,la (F + -42tir) + ABH (la - hIf @@ 

b lee + H (Ai% - B)a 

Figure 2 depicts the surface D,, = 
proach the critical value V’* 

f (k, v). When the velocities of motion ap- 
defined by the expression (1.2), the dispersion increases 

without bounds as the value of the leading Hurwitz determinant of the system appear- 
ing in the denominator of the expression for dispersion tends to zero, 
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ON THE CONSTRUCTION OF PLANE STATIONARY SOLUTIONS 
OP BACKS PC% ~~~ ~~~~~D ~~A 

1, If heat conduction and convestion are neglected, the problem of stationary dis- 
tribution of current in nonequilibrium plasma can be reduced to the problem of conti- 
nuous media electrodynamics with a nonlinear dependence of electrical conductivity 

and of the Hall parameter (Q) on the modulus of the vector of electric current den- 

sity PI. In the plane case this problem reduces to a quasi-linear equation of second 
order for the function of current or electrical potential [Z-4] (Eq. (3.1) below). When 

the Hall parameter exceeds a certain value which coincides with the Hall parameter 
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A method for determining stationary two-dimensional distribution of the ele- 
ctric current and electron temperature in none~ilibrium magnetized plasma 
is developed with heat conduction and convestion taken into account. Solu- 

tion is derived in the form of asymptotic expansions in a small parameter. 
Derivation of the zero approximation for the external and internal expansions 
is investigated. The problem of current dis~ibuti~ in a channel with infi- 
nite electrodes is considered as an example. 


